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Abstract

Data-driven, black box machine learning models have
received a lot of attention in the field of building
control. They have been used successfully to predict
building behaviour given information like weather fo-
recasts and real time sensor information. In these
models, the occupant behaviour is considered to act
exogenously on the building.
We consider the users as active elements of the
building operation control loop. To make educated
control decisions they have to be informed about how
the building will behave. Therefore, we propose a pre-
diction model which explains to occupants the day-
ahead building behaviour using a clustering and clas-
sification by association model. We benchmark this
approach to a neural network regression model and
only observed a small loss of accuracy.
Knowing the upcoming building behaviour, occu-
pants can adjust their behaviour (e.g. putting on
clothes) or the building systems settings (e.g. set
points) accordingly. The proposed method is a pro-
mising way to decode complex regression models into
readable rules, which in future may be useful in con-
junction with for example voice-based virtual assis-
tants.

Introduction

Buildings are a major energy consumer accounting
for 36% of final energy and 55% of final electricity
consumption worldwide (IEA, 2017). 80 to 90%
of that energy is attributed to building operation
(Ramesh et al., 2010). Therefore, optimizing building
operation through effective energy management is
a strong element of current research on sustainable
buildings (Shaikh et al., 2014).
Building occupants have a major impact and
partially explain why high performing building
technologies (e.g. efficient HVAC systems) do not
guarantee low energy use (Andersen et al., 2009).
In a simulation-based study on office buildings, a
difference in energy use of up to 50% is found if
the worker is proactive in energy savings or not
(Lin and Hong, 2013). Behavioural differences are

found in their adaptive actions (e.g. opening/closing
of windows, adjusting set-points) or non-adaptive
actions (operation of office equipment, movement
through space, etc.) (Hong et al., 2017). This
shows that engaging occupants in the energy efficient
control of the building will be crucial to achieving
energy use targets.
Researchers have developed tools which incorporate
occupancy data as input into supervisory building
control algorithms. Supervisory control logic is
implemented at a higher level than the individual
controllers of the building systems. Two approaches
are prevailing in research: rule-based, and model-
predictive control. While rule-based control uses
rules defined by HVAC specialists, MPC conducts an
operational optimisation over a specified prediction
horizon. In both approaches temperature set-points
for the whole building are adjusted, or HVAC systems
activated taking occupant actions (adapative or non-
adaptive) into account. The occupant behaviour is
either hard-coded in schedules or detected based
on data (Lu et al., 2010). Detection of occupancy
patterns (e.g. sleeping, or absent) is a key element of
smart thermostat technologies which already exist.1

A characteristic of rule-based and model-predictive
control is that they monitor human behaviour
instead of involving occupants as sensing and active
element in the control loop (direct human-in-the-
loop control, HIL). Recent publications envision an
interplay of occupants and automated controls where
comfort conditions are traded-off with minimizing
energy use (D’Oca et al., 2018). This negotiation
of comfort conditions demands not only machines
to learn occupancy patterns, but also occupants to
understand the computer controlling the building.
This study contributes by providing a forecasting
method which features a human-readable set of in-
formation to explain the expected building behaviour
given the computer-based controls already existing
in the building. We use a combination of clustering
and associate rule mining. Cluster analysis enables
to find typical 24-hour temperature profiles and

1See for example: https://nest.com/thermostats/

nest-learning-thermostat/overview/
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Figure 1: Overview of the proposed approach.

associate rule mining allows to assign a set of rules
connecting each of the profiles to weather conditions
and occupancy. Based on those rules we select a 24-h
profile for the upcoming day with the classification
by association (CBA) algorithm. As a result, the
occupant has access to numerical building behaviour
predictions which are explained by human-readable
association rules in the form of ”the predicted profile
is x because y” .
The combination of clustering and association rule
mining has been leveraged on building time series
data before. Mirebrahim et al. (2017) and Xiao and
Fan (2014) used it to receive insight on the control
of heating, ventilation and air conditioning (HVAC)
systems. Both cases exemplify the strength of the
approach for analytical purposes, however it has
never been used for forecasting of building time
series.
We showcase the use of the method in a study where
we derive 24-h indoor temperature forecasts for the
upcoming day. Indoor temperature was chosen as it
inherently captures the trade-off between occupant
comfort and energy demand.
The use of a set of temperature profiles and of catego-
rical features (e.g. binned outdoor air temperature)
instead of continuous ones for rule-based prediction
limits model complexity. We benchmarked our
approach against a 24h prediction of a deep multiple
output feed-forward neural network.

In this paper we familiarize the reader with the ap-
plied method and provide details on the clustering
algorithm used (Gaussian Mixture Modelling), asso-
ciate rule mining and the classification by association
algorithm. Then, the performance and limits of the
approach are shown in a case study on indoor tempe-
rature prediction in an office building.

Methodology

The proposed approach combines clustering (Fig. 1,
a) and rule-mining (Fig. 1, b) to give insightful time
series predictions which provide numerical forecasts
as well as explanatory rules causing that forecast
(Fig. 1, c). The method can be applied to any time
series data which is formatted as daily sets of 24
hourly values. In the case study below we focussed

on indoor temperature forecasting only, hence the
model outputs (ŶT ) are labelled T .

The methodology consists of two steps to train the
model:

1. Derive N typical daily profiles using a Gaussian
Mixture Model (GMM). The number of profiles
has to be chosen by the modeller and is treated
as a hyperparameter to be optimized in a grid
search (see Table 2).
Clustering converts hourly output values YT,train

to daily ones YC,train which contain the derived
cluster numbers for each day of the training data.

2. The prediction model, a CBA model, uses as-
sociation rules for the cluster number YC,train

given features Xtrain. In our case study, the n
number of features include daily mean weather
forecast data, date-time information (incl. ho-
lidays), occupancy data and the cluster of the pre-
vious day.
To derive the CBA model, we first generate asso-
ciation rules between Xtrain and YC,train using
the Apriori algorithm (Agrawal et al., 1994).
Then the number of rules is reduced to a small set
which only includes those rules with the highest
confidence. The high confidence rules form the
CBA model.

After this model training process is terminated, the
CBA model can be used to predict hourly indoor
temperatures for the upcoming day given a new set
of unseen features X (Fig. 1, c). It uses the profiles
(cluster centroids) and rules determined on the
training data. Note that, in the following prediction
performance is quantified solely by comparing
predicted hourly values, ŶT,test, to observed hourly
values, YT,test. We fully neglect whether clusters are
predicted correctly.

In the sections below we provide more details on the
two steps to derive the prediction model.

Clustering (Gaussian Mixture Model)

The GMM is suitable for clustering problems. It
has been applied to time series data before (Eirola
and Lendasse, 2013) and specifically on building re-
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lated time series data (Melzi et al., 2017) (Mirebrahim
et al., 2017). It is a classification algorithm which
describes a cluster by its mean and covariance. Both
are composed of a mixture of Gaussian distributions.
This allows it to identify inhomogeneous, multimodal
clusters as required for time series profile clustering
of temperature data. In comparison to the k-means
or hierarchical clustering, GMM is a soft clustering
algorithm, i.e. individual samples influence the cen-
troids of all clusters and not only the one they belong
to (a comparison of both approaches is found in Park
et al., 2019). Soft clustering may be suitable for the
given problem as indoor temperatures are inherently
continuous and cannot be sorted into discrete, sepa-
rable bands. Comparing and picking the best per-
forming clustering algorithm is not within the scope
of this study but would be valuable future work.
The output of the GMM is a probability density
function Pk(x) for each of the clusters k ∈ K given a
set of features X. The density functions consist of a
linear combination of multiple Gaussian distributions
N(x;µkr,Σ) (Hastie et al., 2009).

Pk(X) =
∑
r

πkrN(X;µkr,Σ) (1)

Here all clusters share the same covariance matrix
Σ. The optimum value of all parameters, i.e. the
mean of each Gaussian distribution, the mixing pro-
portion πk,r for each of the R Gaussian distributions
and covariance matrix Σ are chosen by maximising
the log-likelihood

K∑
k

∑
gi=k

log

[
Rk∑
r=1

πkrN(xi;µkr,Σ)
∏
k

]
(2)

of all clusters k ∈ K simultaneously, where
∏

k repre-
sents the clusters prior probability. The cluster with
the highest probability given a set of parameters x is
the one proposed by the GMM. Fitting the GMM is
done using the expectation-maximisation (EM) algo-
rithm (Dempster et al., 1977).

Before the GMM is fitted to the data, the number
of clusters is picked manually. The common way is
to use information criteria like BIC or AIC which
enable to qualitatively compare accuracy of models
with different number of clusters. In our case, we op-
timized the number of clusters to maximize predictive
accuracy of the whole approach in Figure 1.

Model derivation

Association rule mining

Like GMM, association rule mining (ARM) is an
unsupervised learning technique that identifies in-
teresting relationships between features and targets
(Jirı and Kliegr, 2012). It was initially applied to
market basket analysis for the identification of simple
rules to understand consumer behaviour.
First, the discretized features X and targets YC are
stored in a transactional database. The transactional

database is scanned for association rules using one
of the existing ARM algorithms (here: Apriori algo-
rithm, Agrawal et al., 1994). The quality of a rule
is quantified by calculating support and confidence of
each rule described in the following equations.

supp(A) = |t ∈ T ;A ⊆ t| / |T | (3)

conf(A⇒ B) = supp(A ∪B)/supp(A) (4)

Let A be a feature set, A⇒ B an association rule and
T a set of transactions of a given database. Support
captures how likely it is that A and B occur jointly
(P (A,B)) while the confidence provides a value for
how likely the occurrence of B is if A is given. A mi-
nimum value for support is used to place a limit on
the number of rules.
For classification purposes, the rule mining algo-
rithm is adjusted to restrict the consequent B to
only contain the target variable YC . Ma and Liu
(1998) formulated the framework for creating associ-
ation rules in this manner, naming them class associ-
ation rules (CARs). A predictive classification model
is created by a subset of CARs which are picked using
Classification by Association (CBA).

Classification by Association (CBA)

CBA is a supervised machine learning algorithm
which stands out due to its simplicity. It takes CARs
as inputs, sorts them and outputs a subset of useful
rules that can classify sets of features. As outlined by
Ma and Liu (1998), to derive the CBA model, CARs
are sorted by the confidence, then support, and then
the order the rules are generated in. Each entry of
the training data is covered by at least one rule.
The CARs derivation, sorting and deleting of rules
is conducted based on training data and therefore
may be regarded as model training. Afterwards, the
remaining rules can be applied to unlabelled data
picking the first rule within the list of sorted rules
that is satisfied by a given set of new features.
The rules picked by CBA are a useful output in them-
selves, because they provide a human readable list of
the most predictive features for target selection. Ma
and Liu (1998) describe this as the discovery of un-
derstandable rules. The CBA framework can provide
more understandable and more predictive rules than
association rule mining alone. In addition to the pre-
diction of targets on unseen data the outputted rule
set can assist in achieving the human readable functi-
onality desired in many applications.
In this study we used the pyFIM and PyARC li-
braries for ARM and CBA implementation (Borgelt,
2012)(Jirı and Kliegr, 2012).

Case Study

The methodology is applied to predict indoor tem-
peratures in a small room (≈ 10m2, one worker, one
window) of an office building in British Columbia.
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Table 1: Overview on the dataset split into target and features.
Type Sensor name properties

Target YT Indoor air temperature [◦C] hourly mean (15 min. data)
Features X: outdoor air temperature forecast* [◦C] daily mean on-site measured data

wind chill* [◦C] daily mean, on-site measured data
heat index* [◦C] daily mean, on-site measured data

relative humidity* [%] daily mean, on-site measured data
occupancy [%] daily mean, on-site measured data

lagged profile number [] profile number from previous day (predicted by GMM)
date - time [] day of the week, month, season

*discretized by equal frequency binning.

The indoor climate of the room is controlled by a
trickle vent and slab heating or cooling. The trickle
vent preheats or cools fresh air using a coil. Both
systems are connected to a central heat pump.

Data and Feature selection

In the proposed approach the selection of input fea-
tures is crucial as they form the rules shown to occu-
pants to understand temperature predictions. For
now, we limit the set to only a small selection of fea-
tures, constrained by data availability and quality.
The considered data set spans three years (2014-
2017). It consists of measured values on the building
systems and the internal and external climate condi-
tions. The data is not public but information on the
building are publicly available.2 The data from mul-
tiple sensors was cleaned and aligned to a frequency
of one hour (YT ) or one day (X).3 All continuous
features are discretized into bins with equal numbers
of samples. Besides the listed features, we also had
access to temperature set point (occupant input) data
of the room which was constant over the whole period
and therefore ignored.
Among the features in Table 1, we selected a subset
based on an exhaustive grid search (see next section).
In future applications, more occupant inputs

2https://www.reliablecontrols.com/corporate/

facility/
3Instances of sensor outages were found at various points

in the data set. Days with one or more missing indoor tempe-
rature values are ignored leading to a loss of 12.9% of samples.
In future, measurement gaps could be filled with rolling mean
values.

(adaptive actions, see Section 1), building system
data and sensor data of adjacent rooms might be im-
portant to ensure useful explanations for forecasts.

Model derivation

The model was trained on two years of data (Nov.
2014 to Nov. 2016) and tested on the following year.
As the CBA algorithm ranks rules based on support
and confidence values derived on the training data, it
is crucial that the training data consists of the same
number of samples from each season. Otherwise, the
support (Eq. 3) for rules of an underrepresented
season will be relatively low in comparison to rules
of other seasons. Similarly, the confidence of rules
(Eq. 4) would be skewed.
In Figure 2, the resulting seven temperature pro-
files generated with Gaussian Mixture modelling are
shown. All results in this section were derived using
the optimized number of clusters, bin size and set of
features (see Table 2). The profiles may be sorted
from hot to cold and by differences in shape. Two
profiles are rather flat with low average temperature.
The other five profiles fluctuate strongly between day
and night and the temperature is warmer on average.
Next we apply associate rule mining and extract the
classification by association rules (CARs). We re-
ceive distinct explanations for each cluster (see Fig.
3). The rules in Fig. 3 show the three rules with the
highest support value for each cluster. Some clusters
have less than three rules in which case all of the as-
sociated rules are shown.
The most days (highest support) in the training data

Figure 2: Temperature profiles for each of the
seven clusters.

Figure 3: Top 3 rules for classification of each cluster (sorted
by support).
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are members of Cluster 6 and 7. Cluster 6 repre-
sents occupied days during winter (quarter 1) and
shoulder season (spring) with medium outside air
temperature and wind chill, and Cluster 7 is the ty-
pical profile for occupied days in summer (quarter 3,
Season = Summer). Cluster 4 and 2 show the pro-
files for unoccupied days. During unoccupied days
in winter the temperature typically drops to below
20◦C. Cluster 3 has a very distinct shape. It captures
the reheating process after unoccupied days in winter
which typically occurs on Mondays. Cluster 5 des-
cribes overheating inside the room. The rules show
that this happens on days when wind chill is high me-
aning high ambient temperature and low wind speeds.
The strong impact of wind speed is due to the fact
that the room features trickle vents which rely on na-
tural ventilation for cooling. Lastly, Cluster 1 has
very low support values. This is surprising as it lies
between the two most common clusters. The reason
may be that the control routine of the heating and
cooling system leads to indoor profiles very close to
Cluster 7 OR Cluster 6 and nothing in between.
Finally, we apply the derived model to unseen data
and compare the results to the observed indoor tem-
perature profiles. Model derivation and testing was
conducted iteratively in an exhaustive grid search
with the number of clusters, the number of bins for
variable discretization and the selection of features
as hyperparameters. To speed up the process the fe-
atures were grouped into four sets (Table 1). The
optimal parameter settings are shown in Table 2. Es-
pecially, the use of clusters of the previous day in-
creased the accuracy significantly. They were derived
using the mixture model trained on the training data.

Table 2: Results of grid search.
Hyper- Range Final choice
parameter

No. of [1,15] 7
clusters
Bin size [2,10] 5
Feature [Date time],[Lagged [Date time],[Lagged
subsets Clusters],[Weather], Clusters], [Weather],

[Workday], [Occup- [Occupancy]
ancy]

Model validation

Testing the method on unseen data gives a Mean
Absolute Error (MAE) of 0.558◦C and 62.5% of
the variation in the indoor temperature is explained
(R2 = 0.625). Figure 4 shows the characteristics of
cluster based prediction with a cap at high tempe-
ratures and floor at low temperatures. Furthermore,
due to the discrete classification of profiles the pre-
dictions exhibit a gap between 19.7◦C and 20.3◦C.
To better understand the performance and the causes
of inaccuracies, we decomposed the inaccuracies and
benchmarked our algorithm to two different applica-
tions of neural networks.
In a first step, the loss of variance caused by using

18 20 22 24 26
Treal

18

20

22

24

26

T h
at

Figure 4: Observations vs. predictions on test data.

daily temperature profile clusters instead of pre-
dicting each hourly temperature value individually
is shown in Figure 5. Using seven clusters, which
was determined to be optimal by the grid search,
a maximum R2 of 0.79 is theoretically achievable if
all clusters are predicted correctly. Hence, there is a
21% loss in theoretically explainable variance by the
process of converting continuous hourly target values
to seven discrete daily clusters.
Another simplification of the prediction process is the
use of association rules instead of a complex statistical
regression model. To quantify the loss of accuracy
induced by rule based prediction, we conducted the
cluster prediction with a parameterized black-box
classifier. Here, we use a feed-forward neural network
classifier whose parameters were again optimized in a
grid search. It outperformed the CBA algorithm only
by a little (R2 = 0.665).
After having decomposed the loss of accuracy, we
benchmarked the algorithm against a state-of-the-art
deep neural network regressor which predicts 24 tem-
perature values individually for each day. The re-
gressor is fed with the same set of inputs as before
while having 24 temperature outputs. The network
is composed of three layers with 200 neurons each
and was pruned by increasing the regulation term
α (Hastie et al., 2009) step-by-step until optimum
performance was achieved.4 The accuracy is much
higher (R2=0.815) than the proposed cluster- and
rule-based approach but with loss of explainability.
Also it shows that given the current set of features
the neural network fails to explain 19.5% of the va-
riance. Probably, more features on occupants and
other unknowns may be helpful to further increase
accuracy.

4The process of pruning refers to gradually increasing
the regularization term until variance and bias of the neural
network are balanced.
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Figure 5: Maximum achievable R2 score for a given
number of clusters.

Model application

The functionality of the proposed algorithm is shown
in Fig. 6. One week of indoor temperature pre-
dictions for each season is shown. The weeks were
selected randomly among the weeks without missing
data. The rules which caused the CBA algorithm
to predict one of the seven profiles for the upcoming
day are shown below each of the predicted 24h tem-
perature profiles (split by black lines). For example,
on 8th April 2017 the model predicts Cluster 2 be-
cause the previous day was Cluster 6, the heat index
is medium, and the building was unoccupied.
Generally, we find that the cluster- and rule-based
prediction is capable of capturing the indoor tempe-
rature behaviour well. Weekends are identified and
depending on weather conditions different profiles are
picked during the week (see winter week). However,
we also see that Cluster 6 in winter and Cluster 7 in
summer are classified on most days. Rarely, a signi-
ficant misclassification of a day can be observed as for
example found on 22nd October 2017.
The dominance of two clusters is explainable due to
the impact of the heating and cooling system, and due
to the fact that the temperature set point was never
changed by the worker in the training and testing
data. As a consequence, our classifier mainly distin-
guishes between the seasons and between days where
the HVAC system is switched on and those when it
is switched off.
Misclassification may be caused by ambiguous infor-
mation provided by the features. On 22nd October
2017, the classifier predicts the building to be heated
but instead the heating system was switched off as
it is Sunday. On that day the occupancy sensor
recorded some activity in the room. This triggers

the CBA algorithm to predict the wrong cluster, be-
cause in this specific case occupancy-based rules have
higher confidence than rules which consider that it is
a Sunday and the room should be unheated. A si-
milar misclassification is observed on the 19th March
which was also a Sunday.

Discussion

The case study showed that the proposed method is
convenient to apply. Once a pipeline of clustering
and rule-mining is established, it generates forecasts
alongside of comprehensible sets of rules. In Fig. 6
a maximum of four variables per rule were generated
which seems suitable for rapid forecast analysis.
The data available for the case study lacks infor-
mation on occupant action. The rules like it will
be hot (Cluster 5) because wind chill is high and the
building is occupied (see Fig. 3), do not recommend
any occupant action.5 In further applications, the
data should be complemented with behavioural fe-
atures. For example, if an occupant knows that it
will be hot because wind chill is high, the building is
occupied and windows are closed, he or she will open
the window to increase comfort.

Model parameters and model performance
considerations

The number of clusters is the only model parameter
of the GMM which was optimized. Its covariance
matrix, another parameter of the GMM, was set to
be full, i.e. each cluster has a different, full covariance
matrix. A brief study showed that this is better than
all other choices of covariance matrix type (all clusters
sharing the same matrix or the matrices may only
have diagonal elements).
The rule mining process has four modelling para-
meters, i.e. minimum support, minimum confidence,
the bin size of the variable discretization and the
involved features. We included the latter two into
the hyper-parameter optimization process. Minimum
confidence was removed (set to zero) and minimum
support set to five days. This ensures that any de-
rived rule is found at least five times in the data.
The accuracy of the model is significantly lower than
24h predictions of a deep neural network as shown
in Table 3. However, one could argue that a loss
of 0.19◦C in MAE may be acceptable if the method
helps occupants to improve energy efficiency of the
building by adjusting their behaviour. This trade-off
in loss of accuracy and improved occupant behaviour
has yet to be studied in a field test.
The prediction accuracy of the model can be im-
proved by deriving better rules to predict more

5High wind chill index refers to high ambient temperatures
and low wind speeds.

Table 3: Model validation and benchmarking for 24h predictions.
Error Type GMM + CBA GMM + ANNC ANNReg

MAE [◦C] 0.558 0.548 0.37
R2 0.625 0.665 0.815
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Figure 6: Predictions and associated rules for one week of each season in the test data.

clusters accurately (see Figure 5). For example, by
using ten clusters the maximum achievable R2 score
would increase from R2

7 = 0.79 to R2
10 = 0.88. With

the current set of features and the resulting rules, we
determined seven clusters to optimal. Our rule set
is not explanatory enough to accurately predict more
clusters. If more or better features are found, more
clusters could be accurately predicted.
The benchmarking analysis showed that our method
with the current way of feature engineering does not
fully leverage the information hidden in the data. A
neural network achieved much higher accuracy given
the same set of information. More work on feature
engineering could be done, but also it may be con-
cluded that an increase of explainability leads to a
loss in accuracy.

Conclusions and Future Work

This study introduced and benchmarked a novel ap-
proach to provide hourly forecasts on building be-
haviour for the upcoming day. It combines the
analytical power of unsupervised machine learning
(clustering, associate-rule mining) with the prediction
ability of supervised machine learning methods given
by the CBA algorithm. As a result each forecast
is complemented with rule-based explanations why
a certain forecast was given. This would enable occu-
pants to adapt and adjust their actions. In future, we
imagine the method could help to involve occupants
in the building control loop which may lead to an in-
crease in building energy efficiency.
After having benchmarked the accuracy of the
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method against black-box models, the next step is to
conduct a second case study where rules are provided
to actual occupants of a building. This could be done
by implementing the forecasting method on an intel-
ligent personal assistant device to communicate the
explanations and recommendations associated with
temperature or energy consumption forecasts. This
will clarify if influencing occupant actions can in-
crease overall building efficiency.
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